Least Square Error Method Robustness of Computation: What is not usually considered and taught

نویسنده

  • Vaclav Skala
چکیده

There are many practical applications based on the Least Square Error (LSE) approximation. It is based on a square error minimization “on a vertical” axis. The LSE method is simple and easy also for analytical purposes. However, if data span is large over several magnitudes or non-linear LSE is used, severe numerical instability can be expected. The presented contribution describes a simple method for large span of data LSE computation. It is especially convenient if large span of data are to be processed, when the “standard” pseudoinverse matrix is ill conditioned. It is actually based on a LSE solution using orthogonal basis vectors instead of orthonormal basis vectors. The presented approach has been used for a linear regression as well as for approximation using radial basis functions. Keywords—Least square error; approximation regression; radial basis function; approximation; condition number; linear algebra; geometric algebra; projective geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Development a New Technique Based on Least Square Method to Synthesize the Pattern of Equally Space Linear Arrays

Using the sampled data of a desired pattern is a common technique in pattern synthesizing of array factor (AF) of antenna arrays. Based on the obtained data matrix, Least Square Method (LSM) is used to calculate the exciting coefficient of array elements. The most important parameter, which involves the accuracy and complexity of calculation, is the sampling rate of the desired pattern. Classic...

متن کامل

همکاری رباتها در جابجایی جسم نامعین توسط کنترلر امپدانسچندگانه

Parameter identification techniques are particularly attractive to determine the inertial parameters of robot manipulators and manipulated payloads. These parameters are particularly needed in implementation of a model-based controller for robot manipulators. In this paper, the inertial parameters of a manipulated rigid-body object have been estimated. The Newton-Euler equations will be employe...

متن کامل

Fast Least Square Matching

Least square matching (LSM) is one of the most accurate image matching methods in photogrammetry and remote sensing. The main disadvantage of the LSM is its high computational complexity due to large size of observation equations. To address this problem, in this paper a novel method, called fast least square matching (FLSM) is being presented. The main idea of the proposed FLSM is decreasing t...

متن کامل

An Enhanced HL-RF Method for the Computation of Structural Failure Probability Based On Relaxed Approach

The computation of structural failure probability is vital importance in the reliability analysis and may be carried out on the basis of the first-order reliability method using various mathematical iterative approaches such as Hasofer-Lind and Rackwitz-Fiessler (HL-RF). This method may not converge in complicated problems and nonlinear limit state functions, which usually shows itself in the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07591  شماره 

صفحات  -

تاریخ انتشار 2017